Análisis electroforético de proteínas del veneno de Bothrops atrox “jergón” (Ofidia: Viperidae) de distintas zonas geográficas de la Amazonia Peruana

Electrophoretic analysis of proteins in the venom of Bothrops atrox “lancehead” (Ofidia: Viperidae) from different geographical zones to the Peruvian Amazon

Rommel Rojas1, Roberson Ramirez1, Marlanela Cobos1 y Juan Castro1,2

1Centro de Investigaciones de Recursos Naturales-CIRNA
2Universidad Nacional de la Amazonia Peruana-UNAP. Apartado postal 496S Facultad de Ciencias Biológicas.

RESUMEN
Los venenos de serpientes son secreciones endógenas constituidas en su mayor parte por proteínas, que pueden causar diversos cuadros sintomatológicos, y en algunos casos la muerte. Las serpientes fueron recolectadas en el campo por muestreros herpetológicos utilizando la técnica del revelamiento por encuentros casuales \cite{1} y el veneno recolectado por ordenamiento manual. Usando la técnica de electroforesis discontinua en gel de poliacrilamida \cite{2} al 7.5% y 12% con dodecilсулфат de sodio (PAGE-SDS) se analizaron los perfiles electroforéticos de 5 especímenes de Bothrops atrox “jergón” provenientes de 5 zonas geográficas de la Amazonia Peruana, siendo evaluadas en condiciones reductoras utilizando veneno centrífugado, asimismo se realizó la cuantificación de las proteínas por el método espectrofotométrico utilizando el método de Bluret \cite{3}. Los resultados muestran la presencia de proteínas en los rangos de 14 kD a 116 kD, obteniéndose variaciones en la cantidad de bandas proteína, 9,11,8,7,8 para las poblaciones de Moena Caño, Isla Iquitos, Panguana, Genaro Herrera y Nina Rumi, mientras que la cuantificación muestra la existencia de una mayor cantidad de proteínas en el veneno de la serpiente proveniente de Isla Iquitos (57.41 mg/ml) y una menor cantidad en el especimen de Genaro Herrera (32.13 mg/ml). Se concluye mencionando la existencia de variaciones en los perfiles electroforéticos y cantidades de las proteínas presentes en el veneno de Bothrops atrox de la Amazonia Peruana.

Descripciones: venenos, proteínas, electroforesis, poliacrilamida, cuantificación.

ABSTRACT

The snake’s venoms are endogenous secretions constituted for proteins and can produce different symptomatology and in some cases the death. Using the electrophoretic technique in polyacrylamide discontinuous gel of 7.5% and 12% with sodium dodecyl sulphate (PAGE-SDS) in reductions conditions were carried on a protein analysis of the venom in 5 Bothrops atrox snake’s from 5 different geographical zones to the Peruvian Amazon using centrifuge crude venom, additionally the proteins were quantification for using an spectrophotometer following the Bluret method. The results evidence the presents of different bands in the proteins, in ranges of 14 kD to 116 kD, finding 9, 11,8,7,8 bands of proteins for the populations of Moena Caño, Isla Iquitos, Panguana, Genaro Herrera and Nina Rumi, while the quantification show the presents to major quantity of protein in the snake from Isla Iquitos (57.41 mg/ml) and a less quantity in the specie from Genaro Herrera (32.13 mg/ml). We conclude mentioning the existence of variations in the electrophoretic profile and quantification to proteins from the venom of Bothrops atrox to the Peruvian Amazon.

Keywords: venoms, proteins, electrophoretic, poliacrylamide, quantification.
INTRODUCCIÓN

La serpiente Bothrops atrox habita en la Selva Amazónica del Perú y es responsable del mayor número de accidentes ófídicos, constituyendo un problema de salud pública [4]. En el Perú, los accidentes por mordedura de ófidos son responsables de un sinnúmero de pérdidas de vidas humanas; cuando no sucedan casos fatales, los afectados pueden sufrir una destrucción de tejidos hasta la pérdida total o parcial de algún miembro [5].

Del género Bothrops, tenemos a B. atrox, conocida comúnmente como jergón, y es la serpiente venenosa que mayor accidentes produce (cerca del 90%) en nuestra selva. Otras especies de importancia en salud pública son Bothrops pictus, Bothrops barnettii, Bothrops brazili [6].

El veneno es producido por un órgano especializado y desarrollado en la familia Viperidae, denominado glándula de Duvenoy, y está constituido básicamente por péptidos y proteínas tóxicas, tales como miotoxinas, hemorraginas, nefrotoxinas, neurotoxinas y toxinas coagulantes, que cumplen una función digestiva y defensiva [7], la cual presenta una composición compleja y extremadamente variable, conteniendo componentes orgánicos donde destacan las proteínas y péptidos, y componentes inorgánicos que ejercen funciones de apoyo de la estabilidad estructural de algunas proteínas como las metaloproteasas, actuando también como catalizadores en algunas reacciones enzimáticas, siendo los principales componentes tóxicos las enzimas y proteínas que producen efectos bioquímicos, inmunológicos, farmacológicos y patológicos, que pueden inducir lesiones en el tejido local, efecto sistémico o muerte relacionada con la toxicidad del veneno [8].

La gran variación intraspecífica en la composición química y las actividades biológicas de los venenos es un fenómeno muy conocido [9] y hace necesario establecer los patrones protécicos para cada una de las especies de serpientes venenosas presentes en el Perú, principalmente en aquellas que causan ofidismo.

En este sentido; se ha visto necesario analizar electroforéticamente y cuantificar las proteínas del veneno de la serpiente Bothrops atrox "jergón" de diferentes zonas de la Amazonia Peruana.

EXPERIMENTAL

Área de Estudio
Se realizó en el Laboratorio de Biotecnología del Centro de Investigaciones de Recursos Naturales de la Amazonía (CIRNA) de la Universidad Nacional de la Amazonia Peruana; situada en el AA.HH. Nuevo San Lorenzo. Píjpe. Los paullajes S/N.

Obtención de muestras
Las muestras fueron recolectadas a través de muestreos herpetológicos en el campo utilizando la técnica del revelamiento por encuentros visuales (V.E.S) [1] en 5 zonas geográficas de la Amazonía Peruana: la comunidad de Genaro Herrera, cuyas coordenadas geográficas son: latitud sur: 4° 53’46.20” y latitud oeste: 73° 33’50.13”, la comunidad de Moena caño con coordenadas geográficas de: Latitud sur 3° 46’ 22.53” y latitud oeste 73° 14’ 27”, comunidad de Isla Iguito cuya ubicación geográfica es: latitud sur 3° 43’58.63” latitud oeste 3° 49’ 8”, comunidad de Ninarumhi, cuya ubicación geográfica es: latitud sur 3° 46’04.76” latitud oeste 75° 25’40” y la zona de Panguana, cuyas coordenadas geográficas son: latitud sur 3° 53’ 30S y latitud oeste 73° 6’ 42 oeste

Extracción del veneno
El veneno fue extraído de 5 especímenes adultos por presión manual de glándulas venenosas en vasos de precipitados forrados con capas de parafilm, colocados en microtubos separados con ayuda de una micropipeta y almacenado a -20°C.

Tratamiento del veneno
El veneno obtenido fue centrífugado a 14000 rpm durante 3 minutos, el sobrenadante fue transferido a otro microtubo de 1.5 ml.

Perfil Electroforético con dodecil sulfato de sodio (PAGE-SDS)
Se preparó un gel discontinuo de Poliacrilamida con dodecil sulfato de sodio (PAGE-SDS) de acuerdo al método de [2] con un gel de aplanamiento de 7.5% y 12% de corrido, luego se procedió a diluir el veneno 1:20 tratándolo en condiciones reductoras, seguidamente fue colocado en los pozos del gel y se realizó el corrido electroforético durante 2 horas a 85V.
Luego de la corrida electroforética el gel fue revelado utilizando azul de Coomassie utilizando el protocolo propuesto por de [10]

Cuantificación de proteínas

Se llevó a cabo por el método de [3], que consistió en el desarrollo de la curva estándar con 20 mg/ml de BSA, los cuales se mezclaron en 5 tubos, 1 ml de reactivos con 100 μl de los estándares y al cabo de 15 minutos se realizó la lectura a 540 nm, en el espectrofotómetro. Con los datos de concentración y absorbancia obtenidos se hizo la curva estándar y la ecuación de la recta correspondiente, utilizando el programa Microsoft Excel. Para determinar la concentración de las proteínas del veneno, se procedió a realizar la dilución de 1:20, luego se tomó 100 μl de estas mezclándose con 1 ml de reactivos de Bluret y al cabo de 15 minutos se realizó la lectura en el espectrofotómetro (Figura 1). Con los datos obtenidos en dicha lectura se calculó la concentración de proteínas presentes en la muestra, reemplazándolo en la ecuación de la curva estándar.

RESULTADOS Y DISCUSIÓN

En la presente figura se muestra la curva estándar obtenida para cuantificar las proteínas existentes en el veneno de las serpientes en estudio, se obtuvo un R²=0.9997, lo cual permitió utilizarlo en los ensayos respectivos.

Figura 1. Curva estándar obtenida para la cuantificación de proteínas

En la figura 2 se puede observar los datos obtenidos de la cuantificación de proteínas de serpientes de diferentes zonas geográficas, mostrándose una mayor cantidad en el ejemplar de Isla Lagojas (1348.2 mg/ml), mientras que el individuo proveniente de Genaro Herrera (642.6 mg/ml) presentó la menor cantidad de proteínas, los individuos de Moena Caño, Nina Rumi y Panguana, mostraron cantidades medias de proteínas.

Figura 2. Cuantificación de proteínas del veneno de Bothrops atrox de diferentes zonas geográficas.

En la figura 3 se muestra el perfil electroforético de proteínas en el veneno de Bothrops atrox provenientes de diferentes zonas geográficas, mostrándose variaciones intraspecíficas en la migración de las bandas y las cantidades de proteínas.

Figura 3. Perfil electroforético de proteínas del veneno de Bothrops atrox, 1= Moena Caño, 2= Isla Lagojas, 3= Panguana, 4= Genaro Herrera, 5= Nina Rumi, 5= marcador molecular (EZ-RUN protein Marker BP 3600-500, FISHER LAB)

En trabajos similares [11] realizaron la cuantificación de proteínas del veneno utilizando otros métodos de cuantificación, obteniendo una concentración en 78 mg de proteínas en el veneno de Bothrops atrox proveniente de un serpiente y lo identificado. El método utilizado en el presente trabajo, es útil para la cuantificación de proteínas en venenos de
serpientes, ya que su alta concentración permite conferir un rango más confiable lecturas, por otro lado, en muchos trabajos, son utilizados los métodos de Lowry y de absorbancia de 280 nm [12, 13]

El número de bandas proteicas, son variables en todos los especímenes, la serpiente proveniente de Moena Caño, presentó hasta 9 bandas proteicas, la de Isla Iquitos presentó 11 bandas, de la zona de Panguana 8 bandas, de Genaro Herrera 7 bandas y de Nina Rumí 8 bandas. Estas variaciones pueden deberse a muchos factores tales como el estado fisiológico, el estado etario del reptil, la alimentación y el aislamiento [14].

El factor que más afecta la variación intraespecífica de proteínas del veneno es el aislamiento geográfico [15], produciéndose ciertos niveles de alopatría, por la presencia de barreras naturales como los ríos amazónicos, asimismo el aislamiento presente en estas zonas puede generar un veneno específico para ciertas presas, sin embargo, la amazónia peruana presenta una alta diversidad de especies potencialmente útiles para la alimentación de serpientes, lo cual puede influir a generar un mayor grado de variación en los venenos, siendo estos generalistas para varias especies, asimismo [16] mencionan que dentro del rol adaptativo observado en Bothrops atrox es considerado como un depredador generalista cuya dieta incluye pequeños mamíferos y aves, pero también sapos y lagartijas.

[17] Menciona que existe una amplia gama de variaciones en los venenos de serpientes provenientes de la presión evolutiva entre las potenciales presas que desarrollan mayor inmunidad, lo que producirá que las serpientes desarrollen nuevas funciones proteicas que logren ser efectivos con sus presas, en la amazonía peruana, también se está llevando esta presión, lo cual puede influir en el desarrollo de nuevas proteínas en los venenos.

La diferente composición de los venenos puede ser explicada en condiciones de poblaciones fragmentadas debido a la dinámica ecológica y aislamiento y la distancia entre poblaciones de cada zona, asimismo la variación del veneno en el seno de una misma especie puede constituir un mecanismo biológico que dota a la serpiente de gran flexibilidad para adaptarse a ambientes cambiantes y poder, así, garantizar su supervivencia.

Por otro lado, la diversidad intraespecífica de los venenos, pueden generar sintomatologías variables de consideración y requiere de diferentes tratamientos, reconociéndose su importancia médica. Sin embargo, las investigaciones sobre la ubicación geográfica de las toxinas de Bothrops atrox es escasa.

CONCLUSIONES

Existen variaciones en la composición proteica del veneno de la serpiente Bothrops atrox de diferentes zonas de la Amazonía Peruana, finalmente se menciona que las herramientas moleculares como la electroforesis son muy útiles para caracterizar los venenos de serpientes.

AGRADECIMIENTOS

Al proyecto “Herramientas biotecnológicas para la obtención de líneas celulares de alta rendimiento de vitamina C de Myrciaria dubia (HBK) McVaugh “camu camu” por el financiamiento realizado.

REFERENCIAS

Borrojas_2358@hotmail.com